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SUMMARY

The process of transition to shock-wave detachment for a finite

wedge in a uniform stream is reexamined. An asymptotic analysis in

a transformed physical plane yields closed-form solutions valid in a

neighborhood of the wedge vertex. The transformed coordinates

facilitate the application of boundary conditions, and should be use-

ful in the analogous problem for a cone. Quantitative resulis are

obtained which verify the conclusions of CGuderley's hodograph analysis.
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1. INTRODUCTION

In the classical solution for an infinite wedge placed in a steady,
supersonic, uniform stream, it is well known that for sufficiently small
wedge vertex angles 9, a straight oblique shock wave is attached at the
vertex. The flow properties are constant between the shock wave and the
wedge surface, and are determined by the jump conditions across the shock
and flow tangency at the surface.

For given conditions in the uniform stream ahead of the wedge, there
is a maximum vertex angle, 83, beyond which the shock wave is detached
from the vertex, and the simple solution no longer exists. For all but
a limited range of wedge angles smaller than 083, the flow in the "shéck
layer" is supersonic; however, there exlsts a vertex angle 985, 065 < Gd,-
such that the flow in the shock layer is sonic, and attached-shock, sub-
sonic flow occurs in the range of angles 0g < & < 83.

In a practical problem the wedge is, of course, finite in its extent
downstream, end the clessical infinite wedge solution is not valid in
the large. In the range 0g < 8 < 83, where the shock-layer flow is sub-
sonic, the governing gas dynamic equations are of elliptic type; a change
in the downstream boundary condition, expréssing a departure from the
straight gedgE:contour,rcan influence the entire solution. In this case,
fﬁe éiaééical solution occurf only at the vertex, while the shock wave
is generally curyed and the flow properties are not constant away from

the tip.



Guderley (194%7) studied the finite wedge, where he formulated a
boundary problem fgr a simplified form of Chaplygin'’s equation for the
stream function in the hodograph (veloéity) plane. In his analysis,
he discussed qualitatively the process of transition from attached-shock,
supersonic flow to detached-shock, mixed (subsonic-supersonic) flow. In

" a certain

particular, he clarified the significance of "Crocco's point,
point on the shock poler diagram which corresponds to a change in sign
of the streamline curvature behind & curved shock wave (Ferri, 1954).
The wedge angle corresponding to Crocco'’s point, 6,, lies within the
subsonlc-flow range, 05 < 8, < 84; the indication of violent changes
in the flow at this p01nt causbd Crocco (1957) to suspect that the shock
achment occurred there ratheL than at the larger wedge angle, ©4.
CGuderley's analycis showed the conjecture to be false. He demonstrated
that as the wedge angle is increased from 65 to 03, the shock curva-
ture at the vertex is zero for © < 0,; then nonzero, but finite, at
0 = Og; and finally infinite, but still attached, for 8, <9 < 64.

A phenomenon similar to the Crocco-point behavior occurs in the
classical solution for supersonic axisymmetric flow past a circular cone,
but the governing equations preclude a closed-form analysis (Shen & Lin,
1951). In the basilc infinite-cone problem, the shock wave is itself a
cenical surface with vertex at the cone tip, and flow properties are
constant along any intermediate conical surface; but the solution can be

cbtained only by numerical integration of a nonlinear, two-point boundary

provlem (Kopal, 1947). The final analysis of detachment transition is -



not anenable to treatment in the hodograph plane; analysis in the
vhysical plane, or & minor transformetion thereof, will likely be more
straiohtforward. An asymptotlc expansion at the cone vertex seems
promising, and has already been used to obtain the ratio of the shock-
wave and body curvatures at the tip of an ogive of revolution (Shen & Lin,
1951; Cabannes, 1951).

The present paper demonstrates that analysls of the wedge problem
can ' te carried out in the physical plane in a straightforward manner
with quantitative results; that Guderley's conclusions can be reached
without resort to the hodograph trea.tment. An interesting and tractable
eie;enva.lue problem is formulated whose closed-form solution offers a
detailed picture of the behavior of the flow near the wedge vertex as

transition to shock detachment occurs. The asymptotic technique which

be equally applicable to conical flow, with the expectation

that closed-form solutions will not result because of the complexity of

the basic infinite-cone solution

23  ANALYSIS

The flow geometry and coordinates are illustrated in figure 1.
A body-oriented coordinate system is used with the x and y coordinates
along end normal to the wedge surface, and with origin at the vertex. The

basic equations are as follows:

Continuity % (pu) + % (pv) = © (1)

X-momenbtum u SE 55—
X

(2)

'OIH
(o]
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o o )
y-mementum u 5%';— + v 5; + 2;;"6?1;' =0 (3)
Dernculli 727 T % + € + v¥ = constant (4)

The four uninown functions in equations (1) to (4) are u and v, the
x and y compornents of velocity; and p and p, the static pressure
and density. 7 1is the ratio of specific heats of the gas.

We wlll seek & local solution valid in a neighborhood of the wedge
vertex such that along the shock wave, y = 5(x), the usual shock-wave
relations (e.g., see South, 1964) are satisfied, and along the wedge
surface{ ¥y = 0, the y-~component of velocity vanishes; that is,

v{x,0) = 0.

Transformation of coordinates \

S~

[xa I o S vLﬂ‘_ -
Lo svudy iia

Iiow 1n a nelghborhiood of the wedge vertex, it is
convenient to introduce a transformation which maps the shock layer
into an open rectangular region. The coordinates & and 17 are

introduced so that

£ =x, 1=7vy/5(x) (5)
where
i;%= tan A (6)

and A = f - 0, the angle between the tangent to the shock wave and the

wedge surface. Then the shock wave corresponds to the line 1 =1 and



the wedge surface is the £-axis, 1 =0 (fig. 2). Whereas in the
original coordinates, the flow at the wedge vertex occurs at the point

X

0, y =0, it is now "stretched out" along the n-axis, § = O,
0= yl < 1. After eliminating derivatives of p from equation (1) by
using equations (2) to (4), the transformation of equations (1) to (3)

yields

5(%‘,1‘-+%§3§)+(v-\intan?\)-y%g:%-ntankg%+g%=o (7)

VT

S(u-a-l;-+%§—§-)+(v-untan7\)§%-nzé—g-—lg—ﬁ-=0 (8)
- Soa -
8u§;-+(v-untan7\)g—_“;-+-;-§-ﬁ-=0 (9)
The boundary conditions are
v(£,0) = 0 (10)
and
£(£,1) = F[B(£),0,7,Me ] (1)

where £ represents any of the wnknown funcetions w, v, p, or p, and
the particular form for F 1is given by the usual shock-wave relations.

Mo is the stream Mach number ahead of the wedge.



Asymptotic expansions
From physical considerations we expect & solution which coincides
with the infinite-wedge solution at the vertex, £ = O; and such that
the flow variables in a nkighborhood of the tip are continuous, but
may have infinite derivatives. Preliminary study of the equations (6)
to (8), together with the condition that the shock is attached at the
vertex, 6(0) = 0, leads us to an asymptotic expansion for the unknown

Tunctions of the form
£2(8,1) ~ £o(n) + £1(n)e” (12)

where the exponent &« is positive. (The symbol ~ will be used to
denote equality to the lowest order in § indicated.) That form of
solution is indeed found to be compatible with equations (7) to (8),

with
3(£) ~ & tan Ng (13)

After substitution of the expensions (12) and (13) into equations (7)

to (8) and equating coefficients of like powers of £, it can be verified
that the zeroth-order functions fo(n) comprise the classical infinite-
wedge solution, provided that « > 0. It should be emphasized that the

functions £5(n) are constant functions, where

£o(n) = £(0,1) = F[B(0),0,7,Ms] = Fy (1)



and in particular

vo(n) = v(0,n) = 0 (25

The first-order functions fl('q) are found to satisfy the following

system, where primes dcnote differentiation with respect to n:

-:—g— tan )\o(c.pl - np{) + tan 7\o(cx.ul - nuf) + v =0 (16)
(0]
tan
o (or,pl - npi) + uO tan 7‘0(“""1 - nui) =0 (17)
l » H
-;.%' p]'_ + u, tan 7\O(a.vl - nvl) =0 (18)

It is seen that the exponent o enters into the system as a parameter;
later it will beccme clear that in the subsonic-flow range of vertex
angles, 045 <6< 83, o« is an eigenvalue uniquely determined by the
uniform stream conditions and the vertex angle 8. To satisfy the
boundary conditions at the shock wave ,.equa.tion (11), it is necessary

that

B ~Bg + By&” (29)



and from equations (11) and (14),
' JF,
T ,l ~f0,l — ) -
(8,) ~ £0,1) + =2 (5 - £y)

OF,
~ o+ S-BQ B &% (20)

Then the boundary conditions for equations (16) to (18) are
v,(0) =0 (21)

and

aFo

fl(l) = aB

By (22)

where, as mentioned before, f] represents any of the functions uy,
vy, etc., and BFO/BB is the corresponding B-derivative of the

expression for the zeroth-order function at the shock wave (cf. eg. (14)).

Soluticn
The term (aul - nuf) is easily eliminated by ccabining equations (16)

and (17) to yield
(1 - 12)tan Ng(apy - mpf) - pgugvy = O (23)

7
where Mgy 1s the flow Mach number at the wedge vertex, ug v/ 529. Ir
0
equations (18) and (23) are differentiated once again with respect to 17,

the function Y and its derivatives can be eliminated, with the result

zZ
Cb

(1 + an2)vf - 2(a - 1)7v{ + ala - l)Cgvi =0 (24)



where
5= (1 - 15 Y sanAg (25)

It should be noted that in the subsonic-flow range of wedge angles,

05 2:6 <83, Mg <1, and Cy 1is real; whereas in the supersonic range,
0<08<6g, My>1l, and Cy is pure imaginary. Thke case Co =0,
where My = 1, will be treated separately.

For Cqy # 0, equation (24) is simplified by the substitution ¢ = Con.

Then,
2 d?vi dvl
(1+§)....é..-Q(a-l)g——-+a(cz.-l)vl=0 (26)
ag ag

The boundary conditions in terms of the new independent variasble ¢ ere:

at ¢ =0, v =0 (27)
oV,
at g = CO (i.e.’ ‘q = l) vl = aso 'i"l (28)

Equation (26) is recognized io be a hyoerzeometric equation whose genersl

solution can be written in terms oi elementary functions:

vy = Ag(¢) + Ba(L) (29)

waere
g(t) = (1 + iﬁ)“ - (1 - 10 (30a)
() = (1 + 16)% + (1 - 1) (30b)

and A and B are arbitrary constants.
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The variable § is either real or pure imaginary depending on whether

Mg <1 or My~> 1, respectively. In the latter (supersonic shock-layer)
case, both functions g(f) and 1{{) are real-valued; and when My <1,
n(¢) is again real while g(¢{) is pure imaginary. In either case, the
general solution (29) is , of course y real-valued. A convenlent form for

g(¢) and h({) when My <1l is:

() =21+ A7 smep (312)
h(¢) = 2(1 + §2)a’/2 cos afp (31p)

wnere
$ = tan™t ¢ (32)

Application of the boundary conditions (27) and (&5; yiclds the final

result
Mo i
Vi = o =2 33)
LI R CN) (
or in terms of the originel variable 1,
~
Ov Fa
0 5 &{n)
Va7 Z ——— 3 Ll-

where

a(n) = glcon) = (L + icon)® - (1 - 1con)® (35)



Substitution of equation (34) into equation (18), integration, and

applicaticon of boundary condition (22) then gives

3 .

E(n) = n(Con) = (1 + icon)™ + (1 - icom)® (37)
and
oo Svo _m(1) (38)

‘L=5 *eoo TR 5 g ATEO

it will be seen later that the term C; 1is of special importance to
the eigenvelue problem.

If ap, - np] 1is now elimizated bevieen equations (23) and (17),
& differential equation Tor uy; is ovtained in terms of the known
function vi. Then substitution of equation (34, iategreiion, and
application of the boundary condition (22) yielas

OV
uy(n) = L?gn + tan Ay \BO ché?iéJB (39)
where
9 ov,
Co = o0 _ tan Ay —Q —H(1) ko
2=55 ~tal 38 1CyG(1) (ko)
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The solutlon for pl(n) can be obtained directly from the appropriate

expansion of the Bernoulli equation (4), hence

oy (1) = po[p;f)‘"’) (7 - 108 uié’”} (41)

Teuations (34), (36), (39), ard (41) complete the first-order solution

in terms of the parameter Bj, the eigenvaiue «, and the zeroth-order
infinite wedge solution. The paremeter Bl is & scele paremeter whose

role in the solution will be clarified.

Interpretation of By and o
To this point, neither equatica (16) or (17) has been solved explicitly.
Direct substitution of the sclusions (34), (33), znd (39) shows that when

a £ 0, equations (16) and (17) are identicalliy saiisTied 1f and only if

1]
3.C; = C (ha)
woere Cy is glven by equaticn (3;. Touz, either 3- = 0, or
Sp v ‘1)
= o Bl
Cl = = + poug el AQ wo> mfiie = 0 43

The variocus possibilities are treated separately as follows:

(2) Supersonic flov, My > 1. (By = 0) - In the case of a supersonic

shacck layer, equation (43) cannot be sstisfied. Recall that Co 1s pure
izzginary for My > 1, while the functions H(1) and G(1) are real.

turther,

(1) .1 (L + iCOl)a + {1 - ICOI)a (L)
1606(2)  [Col (1 + lcgl )™ - (1 - fegly®
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t can be readily shown from the obligue shoek relations that

and thus
A(1) (46)
iCOG(l)

I equation (38) is divided by the product pwvﬁ (p, and V, are
the undisturbed stream density and velocity), and the obligue shock

relations are applied, then

\

cos?Ay  iCqG(1)

<~wh1ch ifjstxﬂntly negative by virtue of eguation (46). The conclusion
qua.uion (42) 1s thus - By = 0 for Ny > 1, with the further result
that the first-order functions £ are all identically zero. The
interpretetion of this result is that the zeroth-order Ihfinite-wedge
solution prevails throughout the flow to at least a value § where the
wedge contour departs from its originel straight line. This feature is,
of course, well Xnown from other considerations, such as the hyperbolic
character of the full equations for Mo > 1. That is, there is no

.~ ~~

feedback" of downstream disturbances in a locally supersonic flow.



1k

(v) Subsonic flow, ¥y < 1. (C; = 0) - In the subsonic case, both

physical reasoning and the elliytic nature of the full eguations for
Mo <1 sugrest that the first-oricr solution is nontrivial. In fact,

& 1is the eigenvelue which is determined by the reguirement that C
g 1

7

anishes, equation (43). When 1o <1, Cg is real, and equations (31)

o)

rd (32) are used. Hence,

M _ L ot op b
ey - "6 «3(Co) (57)
Wiigre
§(Co) = tan™t ¢ (48)

I noatrivial solutions for the first-order functions are to be obtained')
that 1s By £ O, then comparison of equations (43) and (47) shows that « -

must satisfy

i'— . 5VO
_11 POYO ten A
@ = tan"+ N o8 t tan~t Co (49)
Gy 20 |
0 Y _J

Wnen the oblique shock expressions are again inserted, equation (49) can

&lso be written as

o = tan‘l{-(1 _rxl sin 29 \/COA] tan~t Co (50)
\ sin 284 00527\0// _J



15

Examination of eguations (49) end {50} reveals the Tollowing: In the

S

gubsonic interval, as the wedge anglz irncreases from 9 to 9y,

D

- .
& Qeecresscs from +wo to G. For 9. < @ 3 8. © > a 2 l; Tor
S ) y

[

Al

6, < © s 8, ¥ ad 0. These featurcs can be observed by noting:

(1) As C3 =0, a=w

(2) At Crocco's poiat, the streamline curvature behind a
curved shock waeve changes sign. It can be shown (sece eq. (4-39),
page 683 of Ferri, 1954, and also eq. (C-15), Appendix C of South, 1964)

in terms of the present notation that the following relation holds:

) 5 BPO L vy
o Cs SE— = Loly tan Ay S5 (51)

and thus o = 1.
(3) Ween « = 0, an ecuation is obtained which relates the

dctachment wedge angle 63, the corresronding shock wave zangle B and
O Qr S =3 a2

-

7, independent of the strean iach nuzber. That is, from cquation (50)

. sin 28,
122 " .o (52)
b sin 283 cosQKd

Further manipulation ylelds a gquadratic equation in tan 93, thus

tan 6d=%EL-bi' l-2b] (53)
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a = c¢ct B
(=)
(3%)
- 2
e (st O _‘)
0 = """"" T \us.h dua J
7 T o4 .

liost tables and charts for the cbligue shock relations (e.g., Ames, 1953,

“

pp. h2-Lk3) exhibit a curve which separates the "strong shock" solution

o tha "weak shocik” sciution.

cuztion (53) is the equation of that
curve in the B,9 plane, wubich is scomubimes referred to as the detach-
moat eurve. (The author is nob awvare iF ecuasion (53) has been previously
reported. ) .'l”ns,v it is, in fact, the detachment curve is clear in the

present analysis sinee the solulticn brealks down for o = 0, and an

. -

attached shock wave is no loager possible.

-~ - 3
¥

The paremeter B; cannol e Gel

cominad waen My < 1. The full
eguaticrns are of elliptic type in this case, and the problez is under-
specifica by one boundary conditicn. The loecal solution cannot, of course,
be extended arbitrarily far downstreean:, thus By remalns as a free scale
varameser. It should be noted thot for a =1 only, 4ag8(0)/das is

finite and different from zero, crd By is thus proportional ©o the
shock-wave curveture at the vericex.

{c¢) Sonic flow, Mg = 1. - The sonic condition, Mgy = 1, is the

dividing point between the elliptic and hyverbolic character of the full

equations and their regquired boundary conditions. Essentially the same
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resulis are obtained whether the ccndition is approached from the
subsonic range or the supersonic range. That is, in the subsonic-to-

sonic appreach, o = e; while in the sunersonic-to-sonic aporoach,

Ly APl P T ey ha e T am o T T T e S -
B, = 0. 3ota resuilts suvate thaet in & neighborhccd o the vervex of a
-

RS S STy - e Itered

LLLATE SonLe WelZe, TLC LnNIinLle WELLe JoLUutLon 15 unalvercd.

Pressure behavicr near the vertex

In an experixentel investigetion of supersonic flow over a wedge,

pressure van at the vertex. It is of particular interest, then, to-

o

wnderstand the behavior of the surface prossure in a neighborhood of
& O

.- . s — -~
Toe vertex, as givean by egquation (36}. In the range of wedge angles

9. < 0 <85, it hras been shom“ that ecustica (45) holds; that is,
3 Q bl
C- = U, end Thus ,
Vi ”\/ 3
h) R b “- 4 =
D0 = =5.12 &4 7\,\ vy B
‘l( J Poig ven Ag o iCOC\ e (55)

& convenlent pareneter is s"ﬁg@stOd winich represents the departure of
the surface pressure from its velue at the vertex, in terms of x,

2(0,0) L 22{0) g (56)

ke
2 2
LoV B3PwVe
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Figure 3 ard the compenicn tabie illustrate a worked example for 7 = i.h
ané M, = 2. Tor e wedge wiich terminates with a sharp corner or a
gradual turn away froa the free stream, the subsonie flow near tho vertex
I G cnoiovs B sonic snocd oo o mear the "shouwlder,' and thce shoek
weve will be gc:eraliy convex Ifacing the strcam. That 1s, By will be
oositive velues of C;) indicate an acceleration of
the ficw with a corresponding docerease in nressure. The changing charac-

ter of the flow is clearly evidesnt os the vwedge angle 9 inereases from

9, to 6;. Tor B, <8 < Y., the mressure decrease is graduzl; but for
O, <9 < &g, the pressure grzdicat is intinite.

FoRY -~ K4 b [ 5 o I B A SR NN Y, o PR, 3L
Llthouzh In the prescat colculaticas the scale is wnlciom, it is

ey o P al > - RPN ]
aitude of By will vary looorsely es

EA T ~ N P N . . gl 2
he paysical size of the finlite wedge such as the disteance ¢f the soaic

o mme T T e Doy FRLN oy pale e T . P s ES - 3

ghoulaer Ifrom the vertex. If ¢ 1o that distance, them 25 20 as
et PR IR 2 nl & - ~ oo o - & - ] > i DUDURg SN TN ]
K= 3 the infinite-wedge sclution is extended indefinively.

3 ST T LT
e COSCIUDIIG REARK
% has been shown that the cnalysis of the ficw behavicer during

or a wedge is stroightforward in the
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Zfor the first-order

end auancitative v to the undetermined scale

The consileration of the eifccets of & nonzero surface curvature at

aser, but should present

no veal difficulty. One expects the surface curvature to dominate the

Tlov behavior for € < B,, siace the curveture terms will be linear in &.

.o ~
i

For 8. < 0 < 83, however, the stronz cingularities (infinite gradients)
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